T-1 3/4 (5mm) SOLID STATE LAMP Part Number: WP7113SRD14V Super Bright Red #### **Features** - Low power consumption. - Popular T-1 3/4 diameter package. - General purpose leads. - Reliable and rugged. - Long life solid state reliability. - Available on tape and reel. - 14V internal resistor. - RoHS compliant. ### Description The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode. ## **Package Dimensions** - 1. All dimensions are in millimeters (inches). - 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted. - Lead spacing is measured where the leads emerge from the package. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice. SPEC NO: DSAF2436 **REV NO: V.3** DATE: MAR/10/2011 PAGE: 1 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: J.Yu ERP: 1101005268 ### **Selection Guide** | Part No. | Dice | Lens Type | lv (mcd) [2]
V= 14V | | Viewing
Angle [1] | |--------------|---------------------------|--------------|------------------------|------|----------------------| | | | , | Min. | Тур. | 201/2 | | WP7113SRD14V | Super Bright Red (GaAlAs) | Red Diffused | 180 | 300 | 30° | - 1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value. 2. Luminous intensity/ luminous Flux: +/-15%. ## Electrical / Optical Characteristics at TA=25°C | Symbol | Parameter | Device | Тур. | Max. | Units | Test Conditions | |--------|--------------------------|------------------|------|------|-------|---------------------| | λpeak | Peak Wavelength | Super Bright Red | 660 | | nm | VF=14V | | λD [1] | Dominant Wavelength | Super Bright Red | 640 | | nm | VF=14V | | Δλ1/2 | Spectral Line Half-width | Super Bright Red | 20 | | nm | VF=14V | | lF | Forward Current | Super Bright Red | 10.5 | 13.5 | mA | VF=14V | | lR | Reverse Current | Super Bright Red | | 10 | uA | V _R = 5V | ## Absolute Maximum Ratings at TA=25°C | Parameter | Super Bright Red | Units | | |-----------------------------|---------------------|-------|--| | Power dissipation | 160 | mW | | | Forward Voltage | 16 | V | | | Reverse Voltage | 5 | V | | | Operating Temperature | -40°C To +70°C | | | | Storage Temperature | -40°C To +85°C | | | | Lead Solder Temperature [1] | 260°C For 3 Seconds | | | | Lead Solder Temperature [2] | 260°C For 5 Seconds | | | - 2mm below package base. 5mm below package base. SPEC NO: DSAF2436 **REV NO: V.3** DATE: MAR/10/2011 PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: J.Yu ERP: 1101005268 Note: 1.Wavelength: +/-1nm. RELATIVE INTENSITY Vs. WAVELENGTH ## **Super Bright Red** ### WP7113SRD14V SPEC NO: DSAF2436 REV NO: V.3 DATE: MAR/10/2011 PAGE: 3 OF 6 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: J.Yu ERP: 1101005268 SPEC NO: DSAF2436 APPROVED: WYNEC REV NO: V.3 CHECKED: Allen Liu DATE: MAR/10/2011 DRAWN: J.Yu PAGE: 4 OF 6 ERP: 1101005268 ### **PRECAUTIONS** 1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1) "() " Correct mounting method "imes" Incorrect mounting method - 2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig.2) - 3.Use stand—offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB. - 4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6) - 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7) SPEC NO: DSAF2436 APPROVED: WYNEC REV NO: V.3 CHECKED: Allen Liu DATE: MAR/10/2011 DRAWN: J.Yu PAGE: 5 OF 6 ERP: 1101005268 6. Do not bend the leads more than twice. (Fig. 8) 7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering. - 8. The tip of the soldering iron should never touch the lens epoxy. - 9. Through—hole LEDs are incompatible with reflow soldering. - 10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility. - 11. Recommended Wave Soldering Profile for Kingbright Thru-Hole Products #### NOTES: - 1.Recommend the wave temperature 245°C \sim 260°C.The maximum soldering temperature should be less than 260°C. - 2.Do not apply stress on epoxy resins when temperature is over $85^{\circ}\text{C}.$ - 3. The soldering profile apply to the lead free soldering (Sn/Cu/Ag alloy). - 4.During wave soldering, the PCB top-surface temperature should be kept below 105°C. - 5.No more than once. SPEC NO: DSAF2436 REV NO: V.3 DATE: MAR/10/2011 PAGE: 6 OF 6 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: J.Yu ERP: 1101005268