
UNTZtrument: a Trellis MIDI Instrument
Created by Phillip Burgess

Last updated on 2016-12-06 07:47:26 PM UTC

2
3
4
6
8
9

14

14
16
30
30
31

32
33
33

35
35
39
40
45

Guide Contents

Guide Contents
Overview
What UNTZtrument is:
What UNTZtrument is not:
First Steps
Let’s Get Started!

Introducing Adafruit Trellis (http://adafru.it/dxx)

Troubleshooting
Assemble Case
Software

Installing Arduino Libraries
Uploading Code

Host-Side Software
Using the UNTZtrument_Hello_World Example
Using the UNTZtrument_Step_Seq Example

Hacking
Hardware Considerations
Software Considerations
Using the UNTZtrument Arduino Library
Downloads

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 2 of 45

Overview

Build and customize your very own open-source button grid controller with UNTZtrument!
This DIY kit comes with delicious translucent button pads, driver boards, diffused white
LEDS and a custom laser cut enclosure. The result is a sturdy and elegant but also super-
hackable controller for music, video…or something else???

We designed this kit for ease of use and ultimate flexibility. All you need is an Arduino
Leonardo, basic soldering tools and an afternoon. Once assembled and programmed with
the Arduino IDE, this box turns into a USB MIDI device that works with any computer and
has 64 buttons (128 on the HELLA UNTZtrument) with individually-controllable LEDs. Our
example programs send simple MIDI Note On and Off messages, but with a little
programming ingenuity you can send and receive any kind of MIDI command. Since its USB
MIDI it can work instantly with just about all synth software. Don’t like MIDI? The Arduino

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 3 of 45

Leonardo can also emulate a USB keyboard or plain old USB serial.

Since it's Arduino-powered, adding more stuff like accelerometers, potentiometers, rotary
encoders, etc. is straight-forward using existing libraries available on the Internets.

HELLA UNTZtrument ups the
ante with 128 LED-backed
buttons. It’s huge!

What UNTZtrument is:

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 4 of 45

https://learn.adafruit.com/assets/18146

UNTZtrument is a 64- or 128-button MIDI device that works alongside music software
on your computer.
It’s a kit, requiring some soldering, a few tools and a little prior experience with the
Arduino microcontroller.
UNTZtrument is open source. The software is free and you can mix it up to add your
own new features, or use code that others have written.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 5 of 45

What UNTZtrument is not:
UNTZtrument is not a self-contained musical instrument. It generates no audio and
must be connected via USB to a computer to either create sounds or forward MIDI
data to a synthesizer.
UNTZtrument is not a Monome (or Arduinome), but looks similar. Those are serial
USB devices requiring a software bridge to the Max visual programming language.
UNTZtrument speaks MIDI, which is native to most music software.*

* UNTZtrument could certainly be adapted to be compatible with these…yay for open
source…but we’ve found said bridge software to currently be quite finicky. Using MIDI now
doesn’t preclude using serial for other things later…we might revisit this as the situation
evolves.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 6 of 45

Here Collin Cunningham explains the basics of MIDI:

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 7 of 45

First Steps

UNTZtrument is based on
Adafruit’s Trellis, a 4x4 backlit
keypad kit.

Four Trellises are combined to
make a single large 8x8 matrix
for UNTZtrument. The HELLA
UNTZtrument has eight Trellises
in a 16x8 matrix!

Normally you have to buy three
separate parts for each Trellis
(PCB, elastomer keypad and
LED pack), but the
UNTZtrument kits have
everything you need.

We selected white LEDs for the
UNTZtrument kits. If you have a
large stash of 3mm LEDs in
some other color you can
certainly use those instead.

You will also need an Arduino Leonardo microcontroller board, either the regular

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 8 of 45

https://learn.adafruit.com/assets/17307
https://learn.adafruit.com/assets/17308
https://www.adafruit.com/product/849

version (http://adafru.it/dy8) or the headerless variety (http://adafru.it/dy9) if you want
permanent connections.

UNTZtrument will not work with the Arduino Uno, Mega or other boards. Must be the
Arduino Leonardo, or a 100% compatible board based on the ATmega32U4 microcontroller.
Because MIDI.

Arduino Leonardo. Period.
Additionally, you’ll need some wire (22 gauge solid-core (http://adafru.it/dya) wire is ideal,
but stranded can work in a pinch), a soldering iron & solder, basic hand tools and a
Micro USB cable.

Let’s Get Started!

So, as a first step to building your UNTZtrument kit, work through our introductory Trellis
guide (http://adafru.it/dxx) first. But with a few important changes:

Because UNTZtrument is based
around the Arduino Leonardo, it
requires slightly different wiring:
Use the SDA and SCL pins
instead of A4 and A5 as shown in
the guide.

Looking at the back of the tiled

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 9 of 45

https://www.adafruit.com/product/883
https://www.adafruit.com/product/1311
file:///adafruit-trellis-diy-open-source-led-keypad/overview
https://learn.adafruit.com/assets/17312

Trellis boards…with the text
upright, in the normal orientation
for reading…connect the wires to
the header along the top edge,
toward the right. They should be
about 6 inches (15 cm) long, or a
little longer.

On the HELLA UNTZtrument — a
4x2 assembly of Trellises —
connect the wires to the third
header along the top edge, not
the rightmost fourth header.

Try pointing the wires “inward”
rather than off the edge of the
board. This makes it easier to fit

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 10 of 45

https://learn.adafruit.com/assets/17309
https://learn.adafruit.com/assets/18147

in the case.

The INT pin is not used by
UNTZtrument and does not need
to be connected.

When setting the board
addresses (by bridging the solder
points on the back), use the
values shown here.

Using a different order is not
catastrophic, you’ll just need to
edit the code to match. Following
this standard makes it easier to
share code with other
UNTZtrument users.

Check the orientation of the
boards and use the large Adafruit
silkscreen logo to make sure you
have them oriented right and the
correct addresses set.

Here’s the address map for the
HELLA UNTZtrument.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 11 of 45

https://learn.adafruit.com/assets/17310
https://learn.adafruit.com/assets/17311

Use the code below for testing your UNTZtrument matrix rather than the code in the Trellis
guide; it’s already set up for the tiled matrix.

For the HELLA UNTZtrument, change NUMTRELLIS to 8.

/***
 This is a test example for the Adafruit Trellis w/HT16K33.
 Reads buttons and sets/clears LEDs in a loop.
 "momentary" mode lights only when a button is pressed.
 "latching" mode toggles LED on/off when pressed.
 4 or 8 matrices can be used. #define NUMTRELLIS to the
 number in use.

 Designed specifically to work with the Adafruit Trellis
 ----> https://www.adafruit.com/products/1616
 ----> https://www.adafruit.com/products/1611

 Adafruit invests time and resources providing this
 open source code, please support Adafruit and open-source
 hardware by purchasing products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 MIT license, all text above must be included in any redistribution
 ***/

#include <Wire.h>
#include "Adafruit_Trellis.h"

#define NUMTRELLIS 4 // **** SET # OF TRELLISES HERE

#define MOMENTARY 0
#define LATCHING 1

#define MODE LATCHING // **** SET MODE HERE

Adafruit_Trellis matrix[NUMTRELLIS] = {
 Adafruit_Trellis(), Adafruit_Trellis(),
 Adafruit_Trellis(), Adafruit_Trellis()
#if NUMTRELLIS > 4
 ,Adafruit_Trellis(), Adafruit_Trellis(),
 Adafruit_Trellis(), Adafruit_Trellis()
#endif
};

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 12 of 45

https://learn.adafruit.com/assets/18140

Adafruit_TrellisSet trellis = Adafruit_TrellisSet(
 &matrix[0], &matrix[1], &matrix[2], &matrix[3]
#if NUMTRELLIS > 4
 ,&matrix[4], &matrix[5], &matrix[6], &matrix[7]
#endif
);

#define numKeys (NUMTRELLIS * 16)

// Connect Trellis Vin to 5V and Ground to ground.
// Connect I2C SDA pin to your Arduino SDA line.
// Connect I2C SCL pin to your Arduino SCL line.
// All Trellises share the SDA, SCL and INT pin!
// Even 8 tiles use only 3 wires max.

void setup() {
 Serial.begin(9600);
 Serial.println("Trellis Demo");

 // begin() with the addresses of each panel.
 // I find it easiest if the addresses are in order.
 trellis.begin(
 0x70, 0x71, 0x72, 0x73
#if NUMTRELLIS > 4
 ,0x74, 0x75, 0x76, 0x77
#endif
);

 // light up all the LEDs in order
 for (uint8_t i=0; i<numKeys; i++) {
 trellis.setLED(i);
 trellis.writeDisplay();
 delay(50);
 }
 // then turn them off
 for (uint8_t i=0; i<numKeys; i++) {
 trellis.clrLED(i);
 trellis.writeDisplay();
 delay(50);
 }
}

void loop() {
 delay(30); // 30ms delay is required, dont remove me!

 if (MODE == MOMENTARY) {
 // If a button was just pressed or released...
 if (trellis.readSwitches()) {
 // go through every button
 for (uint8_t i=0; i<numKeys; i++) {
 // if it was pressed, turn it on

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 13 of 45

 if (trellis.justPressed(i)) {
 Serial.print("v"); Serial.println(i);
 trellis.setLED(i);
 }
 // if it was released, turn it off
 if (trellis.justReleased(i)) {
 Serial.print("^"); Serial.println(i);
 trellis.clrLED(i);
 }
 }
 // tell the trellis to set the LEDs we requested
 trellis.writeDisplay();
 }
 }

 if (MODE == LATCHING) {
 // If a button was just pressed or released...
 if (trellis.readSwitches()) {
 // go through every button
 for (uint8_t i=0; i<numKeys; i++) {
 // if it was pressed...
 if (trellis.justPressed(i)) {
 Serial.print("v"); Serial.println(i);
 // Alternate the LED
 if (trellis.isLED(i))
 trellis.clrLED(i);
 else
 trellis.setLED(i);
 }
 }
 // tell the trellis to set the LEDs we requested
 trellis.writeDisplay();
 }
 }
}

So…with those changes in mind…here’s a link to the starter guide:

Introducing Adafruit Trellis (http://adafru.it/dxx)

Don’t continue with the UNTZtrument guide until you have a tested and working 8x8 or 16x8
Trellis.

Troubleshooting

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 14 of 45

file:///adafruit-trellis-diy-open-source-led-keypad/overview

Some of the LEDs don’t light up!

If the positions are somewhat random: some LEDs might have been installed
backwards, or might’ve been damaged from excessive heat. Happens all the time, not
to worry. This is why we include lots of spares. De-solder the problem LEDs and clean
up the holes using a solder sucker, then replace them with new ones (in the correct
orientation).
If it’s a complete quadrant of the 8x8 Trellis, the address jumpers on the back of the
board might be improperly set. Refer to the diagram above.

None of the LEDs light up!
Might be the wiring. The Arduino Leonardo requires the use of different pins when
communicating with the Trellis boards, or you might just have the wires swapped. Refer to
the diagram above.
The wires keep snapping off the board!
Wires shearing off are usually due to cold solder joints, where the solder has not fully
wetted the pad and flowed smoothly between the pad and wire. Make sure you’re fully
heating the pad and wire first before adding solder…do not melt solder on the tip of the iron
and then carry it to the wire, that’s a recipe for failure.
I can’t fit the wires into the Arduino sockets!

It’s a little easier to build UNTZtrument with solid-core wire (it slides right into the Arduino
headers), but sometimes stranded is all you’ve got. Too-fat wires can happen if you’ve
tinned the tip of a stranded wire with excessive solder…

When tinning stranded wires (to
prevent fraying and shorts), use
just a tiny bit of solder, and make
sure it fully flows into the strands.
Sometimes you’ll want to clip off
the very tip of the wire if the iron
left a glop or spike there.

The Adafruit Guide to Excellent Soldering (http://adafru.it/dxy) has lots of advice for
common soldering problems.
Reminder: don’t proceed until you have a fully tested and working Trellis + Leonardo on

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 15 of 45

https://learn.adafruit.com/assets/17313
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools

your desk. It's not easy to debug soldering once its inside the case!

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 16 of 45

Assemble Case
You should have a tested and fully working Trellis (without case) at this point. Don’t proceed
until you’ve reached that milestone.

Start by peeling the backing
paper off both sides of all the
laser-cut parts. It’s easiest to start
at a corner, catching the edge of
the paper with a fingernail.

The laser-cutting process sometimes leaves a little paper soot at the edges. If you like, you
can wash these off with soap and water, just be absolutely certain that all the parts are
completely dry before proceeding!

All told, there should be 13 laser-
cut parts (15 for HELLA
UNTZtrument). Most are clear
except for the one black grid
piece.

Your kit should also include the
following hardware:

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 17 of 45

https://learn.adafruit.com/assets/17256

Eleven (11) nylon screws
Three (3) nylon nuts
Three (3) 1/8" board
spacers
Four (4) 1" threaded
standoffs
One set of 4 peel-and-stick
rubber feet

HELLA UNTZtrument has 2 more
standoffs and 4 more screws for
the wider case.

If any parts are missing or
damaged, contact
support@adafruit.com to arrange
for a replacement.

You’ve already assembled and tested the Trellis and Arduino Leonardo boards; they’re
implied but not listed in the above inventory.

We’ll start with the base piece…
it’s one of the large squares, the
one without the waffle grid.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 18 of 45

https://learn.adafruit.com/assets/17254
https://learn.adafruit.com/assets/17282

This piece has the Arduino
footprint scored on one face. This
helps identify the top surface.

Turn the base over and install
three screws in the Arduino
footprint area.

This piece needs to be turned
back over for additional work.
You can either put a little masking
tape over the head of each screw
to hold them in place…or, if
you’re dextrous, grip the three
screws from the other side as you
turn it over.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 19 of 45

https://learn.adafruit.com/assets/17257
https://learn.adafruit.com/assets/17258

Set the base piece down so the
screws are now pointed up.

Add a 1/8" nylon standoff over
each screw.

Install the Arduino board with the
mounting holes over these three
screws (there’s a fourth hole, but
we’re not using it here).

Add a nut to each screw. There
will probably be some mechanical
interference from nearby headers
and parts…that’s okay, you just
need to get the nuts started.

Now turn the base over, remove
the tape (if used) and gently
tighten the three screws with a
small screwdriver.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 20 of 45

https://learn.adafruit.com/assets/17274
https://learn.adafruit.com/assets/17283
https://learn.adafruit.com/assets/17284

The standoffs are easier, we can
do them one at a time. No need
for tape.

Insert a screw into one of the four
corner holes. Come up from the
underside, as you did with the
Arduino. Catch the screw in the
threads of the standoff and turn it
into place. Finger pressure is
usually sufficient, or you can
gently use a screwdriver.

Repeat until all four standoffs are
installed (six for HELLA
UNTZtrument). You should then
be able to set the base down with

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 21 of 45

https://learn.adafruit.com/assets/17275
https://learn.adafruit.com/assets/17276
https://learn.adafruit.com/assets/17277

the Arduino and standoffs all on
the top side.

Next we’ll install the vertical and

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 22 of 45

horizontal braces.

The vertical braces (which run
parallel to the Arduino’s longer
axis) all look similar, but notice
the “nubs” on the bottom are
different: one, two, one. These fit
into corresponding slots on the
base. (On the HELLA
UNTZtrument, there are five
vertical braces — again, they’re
keyed to only fit specific
positions).

The horizontal braces now slot
into notches on the verticals.
Each of these is a different
shape. The thinnest one is
designed to clear the Arduino’s
power jack. The slightly thicker
(but still pretty thin) brace goes
down the middle, while the full-
thickness one is at the bottom.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 23 of 45

https://learn.adafruit.com/assets/17262
https://learn.adafruit.com/assets/17285
https://learn.adafruit.com/assets/17286

The four side pieces are almost
identical…except for one which
has a notch for the Arduino’s
USB port. Install this side first.
Align the bottom tabs with the
slots in the base and tilt it up into
place. If the USB port is covered,
you’ve got it backwards — turn it
around and try again.

Once the first side is in place, the
alignment of the remaining three
should be straightforward.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 24 of 45

https://learn.adafruit.com/assets/17270
https://learn.adafruit.com/assets/17271
https://learn.adafruit.com/assets/17272

Now get the Trellis board ready.
Remove the rubber buttons for
the time being and turn the board
face-down.

Orientation is important. Once
installed, the top edge of the
Trellis will face be aligned with
the Arduino’s USB port.

Insert the power and signal wires
from the Trellis to the headers on
the Arduino:

5V from Trellis to 5V on
Arduino
GND from Trellis to any
GND on Arduino
SCL from Trellis to SCL on
Arduino (this pin is nearest
the mounting hole with no
screw through it)

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 25 of 45

https://learn.adafruit.com/assets/17273

SDA from Trellis to SDA on
Arduino (this is the second
pin, next to SCL)

The INT pin is not used for this
project; no connection is
necessary.

Now the Trellis gets turned over,
LED side up, and is lowered into
place in the case. You’ll see the
horizontal and vertical braces
have notches into which the
board neatly fits.

The wires will fight you at this
stage, either pushing back
against the trellis or springing out
of the Arduino sockets. This part
goes a little easier if you bend a
couple zig-zag kinks in the wires,
keeping them all within that
quadrant of the case. Be patient
and put each wire back in place if
they pop out.

If your wires are connected to a
different location on the Trellis,
that’s okay…the braces have
notches to allow wires to run from
quadrant to quadrant.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 26 of 45

https://learn.adafruit.com/assets/17279
https://learn.adafruit.com/assets/17287
https://learn.adafruit.com/assets/17264

Once the Trellis is in place, you’ll
probably need to hold it down as
the wires press against it. This is
normal.

While still holding this down,
install the rubber button
elastomers over the Trellis,
aligning the “nubs” with the
corresponding holes in the board.
You’ll need to scoot these around
a little until they all sit flush.

Install the clear top “waffle” piece.
Since you’ll still be holding the
Trellis down, start from one edge,
aligning the notches with the tabs
on the side pieces, and swing this
down into place as you remove
your other hand.

When everything is aligned and
sits flush, you can place the black
surface piece over this.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 27 of 45

https://learn.adafruit.com/assets/17267
https://learn.adafruit.com/assets/17288

Install four corner screws through
both top waffles and into the
standoffs.

Turn the whole thing over and
peel-and-stick the four rubber
feet near the corners.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 28 of 45

https://learn.adafruit.com/assets/17268
https://learn.adafruit.com/assets/17289
https://learn.adafruit.com/assets/17265
https://learn.adafruit.com/assets/17261

Turn it back over and you’re
ready to rock! Plug in a USB
micro B cable and we’ll turn our
attention back to the computer…

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 29 of 45

https://learn.adafruit.com/assets/17280
https://learn.adafruit.com/assets/18148

Software
Getting an Arduino talking MIDI over USB has traditionally been a bag of hurt, but thanks to
a few smart folks it can now be accomplished with the right bits of software.

You’ll start with a plain vanilla Arduino software installation, version 1.6.9 or later. This can
be downloaded from the Arduino web site (http://adafru.it/aHs). Do not use the 1.5.x
beta software for this, nor older releases!

Installing Arduino Libraries

Open up your Arduino IDE and open the Manage Libraries... dialog under the
Sketch→Include Library menu:

If you don't see the Manage Libraries option, make sure you downloaded the Arduino IDE
from arduino.cc! Older versions and derivatives of the IDE may not have it.

You will need to install the following libraries using the Library Manager:

MIDIUSB
Adafruit Trellis
Adafruit UNTZtrument

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 30 of 45

http://arduino.cc/en/Main/Software
https://www.arduino.cc/en/Reference/MIDIUSB
https://github.com/adafruit/Adafruit_Trellis_Library
https://github.com/adafruit/Adafruit_UNTZtrument

Uploading Code

There’s still a little song and dance to be done, but it’s easier than MIDI The Old Way™.

First, select Arduino Leonardo from the Tools→Board menu.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 31 of 45

Now, from the Tools→Serial Port menu, select the port corresponding to the Arduino
Leonardo board.

Open one of the UNTZtrument example sketches in the File→Examples menu. If using a
HELLA UNTZtrument (16x8), add this line near the top of the code:

#define HELLA

You don’t need this change for a regular 8x8 UNTZtrument.

Before uploading the code to the board, unplug and re-plug the USB cable to restart the
bootloader again. There’s a 10 second window to then click Upload. If you miss it on the
first try, just try again with the cable-replugging and uploading.

There’s just one more piece we’ll need to finish the setup…

Host-Side Software
© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 32 of 45

Host-Side Software
UNTZtrument issues MIDI data over USB. Now you’ll need software on the computer at the
other end of that cable.

This requires either a software synthesizer — a program that generates sounds using your
computer’s audio hardware — or a MIDI patchbay utility, which forwards the MIDI data to a
hardware synthesizer.

If you’ve done music on your computer before, you probably already have one or both of
these tools. Otherwise, there are a ton of options out there, many of them free. For
example, on Windows there’s the freeware Firebird2. Mac has the very basic SimpleSynth
or the soup-to-nuts GarageBand. Even Linux has options. Google around for “software
synthesizer”, “free” and “Windows”, “Mac” or “Linux” and see what you find.

There are so many options, we can’t walk you through this for every app or operating
system. It’s usually pretty straightforward though, we’re confident you can find something
and get it installed and running.

Using the UNTZtrument_Hello_World Example

If you haven’t already uploaded this example, run the Arduino IDE, open this sketch and
select “Arduino Leonardo” from the Tools→Board menu and “MIDI” from the Tools→USB
Type menu. Unplug and replug the USB cable from the device and then quickly press the
Upload button (if this fails the first time, try again, there’s about a 10 second window for
uploading the code).

(Remember, you’ll need to add one line as previously described if using a HELLA
UNTZtrument.)

This is a minimal Trellis-and-MIDI example that simply maps each button to a different MIDI
note…lowest at the top-left, highest at the bottom right. It’s not trying to mimic a specific
instrument, nor is there any relationship between rows and octaves or such. It’s basically to
test communication between the device and synthesizer.

Using the UNTZtrument_Step_Seq Example

This is a simple example of a step sequencer, sometimes used for creating rhythms. Each
of the eight horizontal rows of the matrix corresponds to a different sound, while the eight
vertical columns are scanned in sequence…anywhere there’s an intersection (a pixel that’s

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 33 of 45

previously been lit by pressing its button) you’ll get a sound.

Popular among electronic dance music. Hence the name, UNTZtrument.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 34 of 45

Hacking
UNTZtrument is just the start. We hope you’ll hack it to your heart’s content. Some ideas:

New types of MIDI musical instruments or sequencers.
Beyond music…UNTZtrument could trigger video clips and effects for live “veejay”
performances.
The Arduino Leonardo can also act as a HID keyboard or mouse…how about a game
controller or an assistive device?

Not just code…there’s a little space for hardware hacking as well:

Encoders or potentiometers could be added to control different music parameters
(volume, tempo, etc.).
A popular mod for the Arduinome (an inspiration for the UNTZtrument) is an
accelerometer, for more expressive performance.
“Bling it up” with internal LEDs.

UNTZtrument hacking is not for the meek; it requires patience, tools and a
willingness to improvise. Tolerances inside the case are very tight. If you’ve done
“circuit bending” before (modifying electronic instruments), you can probably handle
this.

Hardware Considerations

SDA and SCL are connected to digital pins 2 and 3 on the Arduino Leonardo. Those pins
are not available as inputs or outputs. Everything else is fair game!

A USB port provides current up to 500 milliamps. UNTZtrument uses about 150 mA,
allowing up to 350 mA for your own additions (but aim a little lower to play it safe). That’s
enough for a few NeoPixels or other LEDs, or a small piezo buzzer or vibration motor for
feedback. HELLA UNTZtrument uses close to 300 mA, so there’s about 200 mA available
for adding your own bling.

Small slots between each of the “cells” in the UNTZtrument case can be used for routing
wires. Unruly wiring can be kept at bay with some clear tape or a dot of hot glue.

There are three available GND pins on the Arduino board, one of which is used by the

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 35 of 45

Trellis. Because we’re using USB for power, both 5V and VIN provide 5 Volts (VIN is
normally the higher unregulated voltage from the DC jack, but that’s not being used here);
UNTZtrument uses one of these 5V pins, leaving the other available. If you need to split
power in more directions, 3-way (http://adafru.it/dyi) and 5-way (http://adafru.it/dyj) block
connectors are available, as are smaller 2-way cold splices (http://adafru.it/1494).

Acrylic requires special
techniques for drilling; normal drill
bits will crack it! This optional
plastic part (separately available
from
Adafruit) (http://adafru.it/1945)
has cutouts for adding encoders
or potentiometers.

Three sides of UNTZtrument are
identical, so you can add controls
to any (or all) sides. On the
HELLA UNTZtrument, these fit
only on the left and right sides, or
there’s a longer front part
specifically for the
HELLA (http://adafru.it/dIV).

If you have access to a laser
cutter, the UNTZtrument case
design can be downloaded from
the last page of this guide, so you
can make any special cutouts you
like!

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 36 of 45

https://www.adafruit.com/product/866
https://www.adafruit.com/product/874
https://www.adafruit.com/products/1494
https://learn.adafruit.com/assets/17548
https://www.adafruit.com/products/1945
https://www.adafruit.com/product/2013

If adding more than one
potentiometer, the legs must be
bent back to fit inside the case. If
two potentiometers are installed
in the same quadrant, they install
back-to-back.

Potentiometers don’t care which
outer leg is ground or +V, but the
choice does affect which direction
has increasing output.

If you want increasing values
when turning clockwise, and if
using the 10K pots in the Adafruit
shop (http://adafru.it/dzq), wire
them as shown here.

Other pots may behave
differently. If the output is
reversed from what you wanted,

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 37 of 45

https://learn.adafruit.com/assets/17549
https://learn.adafruit.com/assets/17550
https://www.adafruit.com/product/562

just swap the outer connections,
or compensate in code using the
map() function.

If using rotary encoders, we have
the opposite problem when fitting
in the case: rather than bending
the legs back, we need to splay
them outward.

You need to be REALLY
CAREFUL when doing this. DO
NOT straighten the existing
bends — the legs will crack off!
Instead, add extra bends a little
further down.

Whatever controls you add, you’ll
then need to get really creative
with routing wires. Narrow gauge
(24 or 26 AWG) fits in tight

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 38 of 45

https://learn.adafruit.com/assets/17551
https://learn.adafruit.com/assets/17553
https://learn.adafruit.com/assets/17554

spaces a little better.

Potentiometers especially are a
tight squeeze.

In the second photo you can see
all of the hackishness that was
required for one project. A clamp
provides a temporary hold while
working. Hot glue keeps loose
wires at bay. Cold splices provide
multiple +5V and GND
connections.

Software Considerations

If adding I2C devices (such as certain accelerometers or other sensors), be aware that our
example code does a crass thing to activate 400 KHz I2C (this makes the LED updates a
bit more responsive), and it might not be compatible with other devices you’re interfacing. If
this creates a problem, one option is simply to disable this line of code, reverting to the
standard 100 KHz communication.

On 8-bit AVR boards, the offending line, commented out, would be:

// TWBR = 12;

On 32-bit SAMD-based boards (e.g. M0), the line in question is:

// Wire.setClock(400000L);

Another option (on AVR) is to save the original value of the TWBR register in a global
variable following initialization, then set it to the 100 or 400 KHz rates as needed.

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 39 of 45

https://learn.adafruit.com/assets/17556
https://learn.adafruit.com/assets/17557

Global variable, before setup():

uint8_t i2c_save;

In setup() function, after trellis.begin():

i2c_save = TWBR; // Original 100 KHz value

In loop() or other functions:

TWBR = 12; // 400 KHz
untztrument.writeDisplay();
…
TWBR = i2c_save; // 100 KHz
// Read/write other I2C devices here

These are architecture-specific hacks! If you’re thinking of adapting the UNTZtrument code
to any other microcontroller, don’t do this, it’s non-portable and may be more trouble than
it’s worth.

Using the UNTZtrument Arduino Library

The Adafruit_UNTZtrument library (http://adafru.it/dXW) provides a few utilities to help with
creating UNTZtrument-specific sketches. We foresee every application being quite
distinctive, so the library is pretty minimal and doesn’t impose a lot of policy.

To use the library, you need to include three header files:

#include <Wire.h>
#include <Adafruit_Trellis.h>
#include <Adafruit_UNTZtrument.h>

The first enables I2C communication. Second is the core Trellis library for reading button
presses and changing the LEDs. The third has our UNTZtrument-specific utilities.

The Adafruit_UNTZtrument library contains two object classes. The first is called
Adafruit_UNTZtrument and is simply a slight extension of the Adafruit_TrellisSet class
from the Adafruit_Trellis library…in fact, declaring and initializing the
Adafruit_UNTZtrument object is identical to a TrellisSet:

Adafruit_Trellis T[4];
Adafruit_UNTZtrument untztrument(&T[0], &T[1], &T[2], &T[3]);
const uint8_t addr[] = { 0x70, 0x71, 0x72, 0x73 };
void setup() {
 untztrument.begin(addr[0], addr[1], addr[2], addr[3]);

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 40 of 45

https://github.com/adafruit/Adafruit_UNTZtrument

}

Four Adafruit_Trellis objects are declared (eight for a HELLA UNTZtrument) and passed to
the UNTZtrument constructor. Their I2C addresses are passed to the begin() function in
setup(). All the same Adafruit_Trellis or Adafruit_TrellisSet functions are then available to
the Adafruit_UNTZtrument object.

The Adafruit_UNTZtrument object provides two new functions for converting between
button/LED index numbers (as normally used by the Trellis library) and (X,Y) coordinates
(more useful for programs like the step sequencer).

i2xy() converts a Trellis button or LED index (0–63 for an 8x8 UNTZtrument, or 0–127 for a
HELLA UNTZtrument) to separate X (column) and Y (row) values. You must provide the
addresses of two unsigned char (or uint8_t) variables to store the results:

uint8_t x, y;
untztrument.i2xy(i, &x, &y);

xy2i() is the complementary function, converting an X (column) and Y (row) pair to a
button/LED index:

uint8_t i = untztrument.xy2i(x, y);

Adafruit_UNTZtrument also provides the enc object for interfacing quadrature encoders.
Unlike analog potentiometers (which have a set range of 0–1023 using analogRead()),
encoders are more flexible (and they can spin around and around, no end stops).

Each encoder requires two pins (sometimes called the “A” and “B” channels). The third pin
connects to GND. The shaft “click” function of some encoders is not explicitly handled by
the library…but it works just like any normally-open contact switch and is pretty
straightforward to code for.

Do not connect encoders to Leonardo pins 2 or 3 — those link up to the SDA and SCL
pins required for I2C communication. Anything else is fair game though (even pins 0 and 1,
which Arduino Uno coders often have to avoid).

To use an encoder, just pass the index of the A and B pins to the constructor:

// You can declare encoders onesy-twosey:
enc e(4, 5);

// Or create a whole array of them:
enc e[] = {
 enc(4, 5),
 enc(6, 7),
 enc(8, 9),

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 41 of 45

 enc(12, A2) };

The encoder pins do not need to be sequential, nor are they limited to pin-change-interrupt
pins. Any two pins will do.

An optional third parameter to the enc() constructor enables or disables the Arduino’s
internal pull-up resistor on that pin. Some encoders (such as the ones previously shown)
use the pull-ups…this is the default case and the third parameter is not needed. Others
(“active” encoders, requiring a 5V connection) drive their output high or low on their own;
the pull-up is not needed. Pass a third parameter of false when using these. This is rare.

In your setup() function, you must initialize the encoders as follows:

void setup() {
 // Initialize any/all previously-declared encoders:
 enc::begin();
}

The encoders need to be frequently polled in order to update their values (this is the
downside to not using interrupt pins). There are a couple of ways to do this. Simplest is just
to put this line in your loop() function:

void loop() {
 enc::poll();
}

You only need one of these; it’s not necessary to poll every encoder individually, it handles
the lot.

This requires the loop() function to iterate quickly. But if your program occasionally has to
do something more time-consuming, the encoders may “lose counts” (the value won’t
change as the knob is turned). To avoid this, you can use a timer interrupt to call enc::poll()
at regular intervals (e.g. once per millisecond). This requires some homework…the library
does not provide this — timers are a limited resource and every application or timer library
sets its own rule for these — so you’ll have to wrap a bit of your own code around it.

To read the value from an encoder, use the getValue() function:

// Reading from one encoder named "e":
int16_t bpm = e.getValue();

// Reading one encoder in an enc array:
int16_t bpm = e[0].getValue();

The value is a signed 16-bit integer value. By default, this allows a range from -32768 to
+32767. The range can be limited using the setBounds() function:

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 42 of 45

// Limit encoder "e" to 0-100 (inclusive):
e.setBounds(0, 100);

An optional third parameter sets whether the value stops (further turns won’t further change
the value) or “wraps around” (turning past the upper limit returns the value to the lower limit,
and vice-versa). Pass true to enable wrap-around, otherwise pass false (or just leave off the
third parameter — false is the default behavior).

The value of an encoder can be set or changed with the setValue() function:

e.setValue(42);

When setting bounds, if the current value of the encoder falls outside the requested range it
will be clipped or wrapped as appropriate. Therefore, if you need to change both the range
and value of an encoder, it’s recommended to set the range first:

e.setBounds(0, 100);
e.setValue(42);

Some encoders have detents — little clicky stops you can feel as the knob is turned. With
the Adafruit encoders, there are four “counts” per detent…that is, it tends to stop on the
values 0, 4, 8, 12, etc. But maybe you’re using other encoders that spin freely. The library
doesn’t dictate the use of encoders with detents, so you may want to compensate in code
by setting a 4X larger range and dividing the value read by 4 (or whatever detent size your
specific encoder uses).

For example, let’s suppose we wanted an encoder for setting a tempo between 60 and 480
beats per minute (240 by default). We’re using an Adafruit encoder or another type with the
4-count detents, so the relevant parts of our code might look like this:

enc e(4, 5); // Encoder on pins 4 & 5

// in setup():
e.setBounds(60 * 4, 480 * 4 + 3);
e.setValue(240 * 4);

// in loop():
bpm = e.getValue() / 4;

This then provides the expected one step per detent.

I instinctively always want to say détente, but no, that’s a different word for a different thing.
Detent. De-tent, like having one’s tent removed. Even Wikipedia notes this
confusion. (http://adafru.it/dzD) :)

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 43 of 45

http://en.wikipedia.org/wiki/Detent

Downloads
You can laser cut your own enclosure, or make modifications with the following, cut from
3mm 1/8" Acrylic in any colors you wish!
UNTZtrument_v1.dxf
http://adafru.it/dY2
You can find CAD files for Trellis elastomers and PCBs on github (http://adafru.it/cZh)

© Adafruit Industries https://learn.adafruit.com/untztrument-trellis-midi-instrument Page 44 of 45

https://learn.adafruit.com/system/assets/assets/000/019/653/original/UNTZtrument_v1.dxf?1410375394
https://github.com/adafruit/Adafruit_Trellis

	Guide Contents
	Overview
	What UNTZtrument is:
	What UNTZtrument is not:
	First Steps
	Let’s Get Started!
	Introducing Adafruit Trellis (http://adafru.it/dxx)

	Troubleshooting
	Assemble Case
	Software
	Installing Arduino Libraries
	Uploading Code

	Host-Side Software
	Using the UNTZtrument_Hello_World Example
	Using the UNTZtrument_Step_Seq Example

	Hacking
	Hardware Considerations
	Software Considerations
	Using the UNTZtrument Arduino Library
	Downloads

